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Short summary:  

Tuberculosis transmission rates in the United States are low but highly heterogeneous; a small 

fraction of cases contribute substantially to overall transmission. Understanding the drivers of this 

heterogeneity could improve outbreak prevention reduce TB transmission. 
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ABSTRACT 

 

Background: Reductions in tuberculosis (TB) transmission have been instrumental in lowering TB 

incidence in the United States. Sustaining and augmenting these reductions are key public health 

priorities. 

 

Methods: We fit mechanistic transmission models to distributions of genotype clusters of TB cases 

reported to CDC during 2012–2016 in the United States and separately in California, Florida, New 

York, and Texas. Using these models, we estimated the mean number of secondary cases generated 

per infectious case    ) and individual-level heterogeneity in    at state and national levels. We also 

assessed how different definitions of clustering and variation in case ascertainment affected these 

estimates. 

 

Results: In clusters of genotypically linked TB cases occurring within a state over a 5-year period 

(reference scenario), the estimated    was 0.29 (95% CI: 0.28–0.31) in the United States. 

Transmission was highly heterogeneous: 0.24% of simulated cases with individual   >10 generated 

19% of all recent secondary transmissions.    estimate was 0.16 (0.15–0.17) when a cluster was 

defined as cases occurring within the same county over a 3-year period. Transmission varied across 

states: estimated     were 0.34 (0.3–0.4) in California, 0.28 (0.24–0.36) in Florida, 0.19 (0.15–0.27) 

in New York, and 0.38 (0.33–0.46) in Texas. 

 

Conclusions: TB transmission in the United States is characterized by pronounced heterogeneity at 

the individual and state levels. Improving detection of transmission clusters through incorporation of 

whole-genome sequencing and identifying the drivers of this heterogeneity will be essential to 

reducing TB transmission in the United States and worldwide. 
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Introduction 

 

Tuberculosis (TB) incidence in the United States fell by more than 70% between 1993 and 2017; 

reductions in transmission driven by progress in detecting and treating latent TB infection among 

persons recently exposed have been a key component of this decline.1,2 Even though a minority of 

new TB cases are due to recent transmission,3,4 extensive public health resources are required for 

their investigation and control. In the absence of timely TB control measures, these recent 

transmission outbreaks can grow, leading to large numbers of cases within the local community.5 

This is especially pertinent for vulnerable populations, which include racial and ethnic minorities, 

persons living in congregate settings (including correctional facilities and homeless shelters), and 

patients with medical comorbidities who are susceptible to TB and poor TB outcomes.6–9 The risk of 

outbreaks expanding into larger populations and becoming endemic increases as they become larger 

or more frequent.10 Understanding more about past outbreaks and responding with focused 

strategies can help prevent future outbreaks and mitigate these negative impacts. 

 

Transmission of Mycobacterium tuberculosis (Mtb) is heterogeneous, driven by pathogen, host, 

environmental, and societal factors.11 A better understanding of this heterogeneity can help improve 

TB control efforts, including outbreak prevention and response. Molecular characterization of Mtb 

isolates through genotyping   

— which consists of matching isolates on the basis of both spacer oligonucleotide typing 

(spoligotype) and 24-locus mycobacterial interspersed repetitive unit-variable number of tandem 

repeats (MIRU-VNTR)—can identify TB cases that are clustered and thus presumptively related by 

recent transmission.12 Genotyping has also been used to understand the evolution and spread of 

Mtb.13,14 We use the U.S. distribution of genotypically clustered TB cases to characterize recent 
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transmission nationally and in the four states reporting over half of all TB cases: California, Florida, 

New York, and Texas. 

 

Methods 

 

Cluster distribution data 

 

We used data from the U.S. National Tuberculosis Surveillance System (NTSS) and the National 

Tuberculosis Genotyping Service (NTGS) for TB cases reported from the 50 U.S. states and District of 

Columbia during 2012–2016 to infer the distribution of TB clusters in the United States and 

independently in California, Florida, New York, and Texas. Cases were defined as clustered if they (a) 

had matching spacer oligonucleotide typing (spoligotype) and 24-locus mycobacterial interspersed 

repetitive unit—variable number of tandem repeats (MIRU-VNTR) genotyping results, (b) were 

reported within specified geographic boundaries (i.e., same county or state), and (c) occurred during 

two time periods (i.e., 2012–2016 or 2014–2016). A cluster definition that included cases reported 

within a single state boundary and within 2012–2016 was defined as the reference scenario. 

 

Branching Process Model 

 

We used a branching process framework to describe recent transmission and cluster formation.15,16 

In this framework, the number of secondary cases resulting from a single case over a course of its 

infection occurs probabilistically and is given by the “offspring distribution” of the branching process 

model,   (Table 1). The mean of this distribution is   , the reproductive number, equal to the 

average number of secondary cases resulting from a single case. We assume that this probability 
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distribution of secondary cases follows a Poisson distribution with parameter  , i.e.,     

 )            )   

 

Modeling individual-level heterogeneity 

 

To incorporate individual-level heterogeneity in transmission, we varied the value of   between 

individuals; here   can also be interpreted as the individual-level reproductive number.16 We 

compared four different models, with each encapsulating a different level of heterogeneity 

represented by the distribution of   (Table 2). In all four models, the mean of both   and the 

offspring distribution   is   . Model I (“homogeneous” model) assumes that   is constant (  =   ) so 

that all individuals have the same infectious potential, and the number of secondary cases resulting 

from each case is Poisson-distributed. Model II (“SIR-type” model) assumes that the individual 

reproductive number is distributed exponentially, similar to assumptions in standard SIR-type 

compartmental models. Model III (“overdispersed” model) –a model previously used to capture 

heterogeneity in transmission of TB and other infectious diseases14,16–18 –assumes a gamma 

distributed  , resulting in a negative binomial distribution of secondary cases, with mean    and 

shape parameter  . Finally, Model IV (“long-tailed” model) allows for even greater heterogeneity 

using a Poisson lognormal distribution; this modeling approach is often used to describe species 

abundance19,20 and recently heterogeneity in TB transmission.21 This model assumes that the 

individual reproductive numbers   follow a lognormal distribution (i.e.,      )       )), where   

and   are the mean and standard deviation, respectively, of an underlying normal model. Larger 

values of    are indicative of increased heterogeneity.  
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Model comparison 

We used a likelihood-based framework to evaluate and compare the fit of each model described 

above to the observed data. Using the likelihood function (described in detail in the supplementary 

materials, section S4), we calculated the maximum likelihood estimates (MLEs), the parameters that 

yield the highest likelihood, and corresponding 95% confidence regions/intervals. We compared 

models using Akaike information criterion,              ̂), where   is the number of 

parameters in a model, and  ̂ is the likelihood estimate. 

 

Sensitivity of model inference to data censoring and importation 

To assess the sensitivity of model inference to possible imperfections in data, we conducted a 

simulation study in which we considered two mechanisms by which observed data could differ from 

true clustering. First, we assumed underreporting of clustered TB cases due to factors such as cases 

not being reported in local jurisdictions, cases not being culture-confirmed (e.g., pediatric cases) or 

isolates not being genotyped, or cases being right- or left- censored over time. Second, we assumed 

over-ascertainment of clusters due to inclusion of imported cases of matching genotype (i.e., not 

due to local or recent transmission). We generated synthetic cluster distributions by simulating the 

branching process models under various assumptions about    and individual-level heterogeneity 

(taken as true parameter values), which also incorporated imperfections in data described above. 

For each synthetic cluster distribution, we then applied the likelihood-based inference method to 

estimate both    and individual level heterogeneity (estimated parameter values)  By comparing 

true parameter values to their corresponding estimates, we inferred the sensitivity of each 

estimated parameter value to underreporting or over-ascertainment. (See section S5 and S6, and 

Figs S1-S4 for additional details.) 
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Results 

 

Cluster distributions 

Of 35,313 genotyped TB cases reported during 2012–2016 in the United States, 13,159 cases (37%) 

were clustered under the reference definition, of having the same genotyping result as at least one 

other case that was reported from the same state during the same period (Fig 1A). The remaining 

22,154 (63%) unclustered cases did not have another same-state case with the same genotype 

during that timeframe. Among clustered cases, 31% occurred in large (≥10 cases) clusters; the 

largest cluster included 148 cases. When we restricted the definition of clustering to cases reported 

within county boundaries and occurring within a 3-year period (2014–2016), 21% of cases were 

clustered, and 15% of clustered cases were in clusters of   10 cases. The largest cluster contained 65 

cases (Fig 1B). 

  

Model comparison 

Of the four models considered, Model IV (“long-tailed” model), which assumed the highest level of 

individual-level heterogeneity, provided the best statistical fit. The MLE under Model IV was 

statistically >1,000 times more likely to explain the data than Models I–III (Table 2). Much of this 

improved fit reflected a better ability to represent clusters of large size (i.e., the long tail), which 

occurred more frequently than predicted under Models I–III (Fig 2). This result was found 

consistently, regardless of cluster period or if clusters were defined within counties or states (see 

Figs S5–S8). Comparison of model fits across four states (Section S9, and Figs S11 and S12) also 

support this conclusion. 
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Individual-level heterogeneity in transmission 

The estimated distribution of the individual reproductive number revealed substantial individual-

level heterogeneity (Fig 3). For 95% of TB cases, the individual reproductive number was estimated 

to be less than one; these cases generated only 38% of secondary cases. Only 5% of TB cases were 

estimated to have individual reproductive number of 1 or greater, and these individuals generated 

62% of secondary cases. Of note, 0.24% of cases were estimated to have a reproductive number 

larger than 10 and were projected to generate 19% of secondary cases. 

 

Cluster ascertainment criteria and inference 

The estimated value of       )̂ varied by geographic area and the timeframe used to define 

clustering. For example,   ̂ in the reference scenario (state boundaries, and five-year timeframe 

between 2012 and 2016) was 0.29 (95% confidence interval [CI]: 0.28–0.31; Fig 4, hatched orange 

region); this estimate fell to 0.25 (95%CI: 0.24–0.27; Fig 4, orange region) when using a 3-year 

timeframe between 2014 and 2016, 0.19 (95%CI: 0.18–0.2; Fig 4, hatched green region) when using 

county boundaries but a 5-year window, and 0.16 (95%CI: 0.15–0.17; a 45% reduction; Fig 4, green 

region) when using both 3-year timeframe and county boundaries (See Table S1). Estimates of 

heterogeneity in transmission were less sensitive to the choice of cluster definition. For example, the 

estimated percentage of secondary cases originating from cases with   >10 fell between 16% and 

19% regardless of cluster definition (Fig S9). 

State-level variation 

The cluster distribution of TB cases and the corresponding estimates of individual-level reproductive 

numbers varied considerably at the state level. For example, the proportion of clusters with ≥10 

cases was nearly 8-fold larger in Texas compared to New York (Fig 5, blue line compared to red line). 

Consequently, the estimated mean individual-level reproductive numbers varied by a factor of two: 
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0.19 (95% CI: 0.15–0.27) in New York, 0.28 (95% CI: 0.24–0.36) in Florida, 0.34 (95% CI: 0.3–0.4) in 

California, and 0.38 (95% CI: 0.33–0.46) in Texas (See Table S2). There were substantial differences in 

estimated degree of transmission. For example, the contribution of individuals with   >10 to the 

total secondary cases varied from 9.5% (from 0.13% of individuals) in Florida to 20% (from 0.3% 

individuals) in California (Fig S10). 

 

Sensitivity of model inference to data censoring and importation 

Under- and over-ascertainment of clusters had a predictable effect on the inference of   .    was 

underestimated (bottom left quadrant in Fig S3A) when cases were underreported and 

overestimated (top right quadrant in Fig S3A) when cases were over-ascertained. In both instances, 

the degree of under- or overestimation was linearly associated with the level of underreporting or 

over-ascertainment. Estimates of individual-level heterogeneity in transmission ( ) were unaffected 

by underreporting and were only slightly underestimated when the observed clusters included over-

ascertainment of imported cases (Fig S3B). 

Discussion 

 

This model-based analysis of genotype-clustered TB cases in the United States revealed that there is 

substantial heterogeneity in transmission. We estimated that 95% of individual cases transmit to less 

than one secondary case each and contribute to only 38% of overall secondary transmission. By 

contrast, 0.24% of cases were estimated to transmit to 10 or more secondary cases, resulting in 19% 

of all secondary cases. This degree of heterogeneity is larger than described with prior models (i.e., 

negative binomial distribution)16,22, but is remarkably consistent with data and prior analysis from 

the United Kingdom and the Netherlands21 (Section S10, Figs S13 and S14). Taken together, these 

results suggest that heterogeneity in TB transmission (in low-burden settings) may be larger than 
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previously thought and may be driven by common underlying processes (e.g., propensity for 

transmission in outbreak-prone settings).  

 

The characteristics of Mtb transmission varied across states. For example, even though TB incidence 

is similar in Texas and New York, the estimated    in Texas was twice as high, suggesting that more 

cases in Texas reflect recent transmission, whereas more cases in New York may represent 

reactivation of latent infection or importation. These findings are consistent with estimates of recent 

transmission from the U.S. Centers for Disease Control and Prevention (CDC)23 and from a previously 

published transmission model.24 This may be reflecting differences in demography, immigration 

patterns, mobility, population density, relative sizes of key populations (e.g., people experiencing 

homelessness or incarceration), variation in Mtb strain pathogenicity and virulence, and societal 

context.25 Also important to consider are differences in the size of jurisdictions, particularly counties, 

which can vary considerably between states: outbreaks are unlikely to be confined to small and/or 

highly interconnected counties (e.g., in cities) but may be contained in larger counties with more 

self-contained populations.  

 

Conventional genotyping has known limitations that can lead to underestimation or overestimation 

of clustering. Underestimation may occur if true transmission-linked cases are not detected (e.g., 

individuals move out of a jurisdiction, or are reported elsewhere), do not have a specimen culture 

showing Mtb, or do not have an Mtb specimen that was genotyped (e.g, technical challenges 

associated with particular loci26). In the United States, most cases are likely diagnosed, and more 

than 95% of cultured cases have genotyped specimens,27 making the choice of geographic area and 

period for the definition of clustering important. Our estimates suggest that defining clusters at the 

level of the county rather than the state could reduce estimates of transmission within clusters by 
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over one-third. Some left and right censoring in observed clusters may also occur over time. For 

example, cases may be missed towards the beginning of an outbreak (i.e., not included in the data) 

or towards the end (i.e., not yet diagnosed). Such under- or over-ascertainment might cause 

estimates of recent transmission (i.e.,   ) to fall or rise proportionally. The choice of time periods 

that we examined seemed to have less impact on estimates of transmission; none of the 

mechanisms mentioned above substantially affected estimates of individual-level heterogeneity in 

transmission, which remained high in all of our sensitivity analyses. When choosing the appropriate 

administrative level at which to define clusters, it is important to additionally consider the 

geographic size and population of administrative units, their interconnectedness, the relative value 

of a sensitive versus specific definition, and the level at which any response could be organized. 

 

Conventional genotyping methods may also overestimate clustering by falsely attributing 

transmission links to cases that share common ancestry but are not related by recent transmission. 

TB often has a decades-long latency period, genotyping cannot be performed during this latent 

period, and molecular changes occur slowly; these factors can limit the use of conventional 

genotyping to estimate transmission. For example, cases resulting from a commonly circulating 

(endemic) strain might reactivate at similar times and thus could share a genotype but not reflect 

recent transmission events. Genotyping clusters defined by 24-loci MIRU-VNTR could encompass 

transmission events up to three decades in the past.28 Studies that have compared genotyping with 

whole-genome sequencing (WGS), considered a gold standard, have found that only about 50%–60% 

of genotyped clusters could be confirmed by WGS.29,30 This discrepancy tended to be much more 

pronounced for clusters consisting of nonnative individuals, suggesting that importation (i.e., 

transmission that occurred in distant past or outside of the country) can also contribute to 

overestimation.26,29 Furthermore, accurate clustering by conventional genotyping varies by Mtb 

strain, with some genotypes and lineages having higher rates of internal diversity by WGS, meaning 
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they are less likely to be related by recent transmission.31,32 These genotypes are also often 

concentrated in specific geographies, so the amount of inaccurate clustering can vary by state. As a 

result, varying imprecision in clustering could account for some of the variation in our estimates of 

heterogeneity of transmission between states. 

 

Recent and local transmission can be corroborated through identification of epidemiologic links.33 

However, conducting epidemiologic investigations is challenging in populations with large numbers 

of clustered cases, especially if transmission occurs in settings and venues where identifying contacts 

may be infeasible (e.g., populations in which routine investigations are challenging, such as those 

experiencing homelessness and substance abuse).34,35 Novel methods that incorporate transmission 

and epidemiological dynamics, contact patterns and network structures, genetic diversity, and 

evolutionary dynamics of Mtb may improve our ability to infer transmission by integrating molecular 

and genomic data.18,36–41 

 

The high degree of heterogeneity in individual reproductive number estimated here might not only 

reflect individual-level factors, but environmental conditions, societal and healthcare provider-

related factors that individuals experience. Communities or populations in which background Mtb 

infection rates are higher, comorbidities and risk factors are more prevalent, living conditions are 

more crowded and less ventilated (e.g., homeless shelters, correctional facilities), or more barriers 

to accessing health care exist are likely to experience higher rates of transmission and encounter 

challenges in the detection and treatment of latent TB infection among persons recently exposed to 

TB to prevent progression to infectious TB, resulting in larger and more frequent TB clusters.42,43 

Better characterization of larger clusters, for example by incorporating data on settings of possible 

transmission, demography, health equity measures, geography, and other risk factors,44 might help 
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better identify factors that drive high transmission. In our analysis, we did not account for variability 

in infectiousness among clustered cases (e.g., sputum smear positivity and grade, radiographic 

evidence of cavitary disease among cases with pulmonary TB disease). Linkage of such clinical data 

with WGS and phylogenetic analyses of TB cases in large clusters might provide insight into the 

frequency and mechanism of high transmission, thus improving resource allocation by excluding 

probably unrelated cases from outbreak investigations. These insights could also help TB programs 

proactively identify (or potentially predict) the cases and contacts at highest risk of resulting in 

secondary cases and high transmission events so that further transmission can be prevented through 

intensified, focused interventions to ensure complete identification, evaluation, and treatment of 

recently infected contacts. Further work to identify if some strains of Mtb are associated with 

increased transmission due to pathogenicity or virulence factors could also help TB programs 

prioritize certain cases and contacts for follow up to prevent further transmission. 

 

In conclusion, this model-based analysis of molecular surveillance data in the United States suggests 

that although the overall rate of recent TB transmission is generally low, a small fraction of TB cases 

probably plays an important role in driving transmission at the population level. Understanding the 

drivers of this heterogeneity—by identifying populations, settings, and activities that are more 

frequently associated with large outbreaks—could improve outbreak prevention and response 

(through early and accurate detection of large clusters), reduce TB transmission and improve TB-

related resource allocation in the United States and more broadly. 
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Notations 
and symbols 

Descriptions Underlying assumptions 

   Reproductive number, or average 
number of secondary cases 
resulting from a single case. 

Theoretical concept. 

  Individual reproductive number, 
expected number of secondary 
cases resulting from each individual 

Assumed to vary based on the underlying 
models. See Table 2. 

  ̂ Estimated reproductive number, 
based on maximum likelihood 
estimate.  

The estimates are aimed to capture cases 
resulting from recent transmission (and 
exclude cases resulting from reactivation that 
occur at longer time scales). 
 
The estimates are based on genotyped 
cluster data, and subject to limitations of the 
clustering method (including missing cases, 
cases not cultured or genotyped, over-
ascertainment of clustering).  

  Offspring distribution of a branching 
process, that describes the 
probability distribution of the 
number of secondary cases 
resulting from a single case 

Varies based on the underlying models. See 
Table 2. 

 

Table 1. Table of notations and symbols used in the paper along with detailed descriptions and 

underlying assumptions.   

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/advance-article/doi/10.1093/cid/ciac121/6526443 by Johns H

opkins U
niversity, W

elch M
edical Library user on 14 February 2022



Acc
ep

ted
 M

an
us

cri
pt

 

 

Models Model description Underlying distribution of 
individual reproductive 

number, ;  
the resulting distribution of 
secondary cases,  ;  
variance of   

Maximum 
likelihood 
estimate, 
MLE, log 
scaled 
(difference in 
log likelihood 
units relative 
to the 
highest 
estimate) 

Relative 
likelihood 
compared 

to the 
best 

model ** 

Model I: 
Homogeneous 
model* 

Assumes no 
individual-level 
heterogeneity, i.e., all 
individuals have the 
reproductive number.  

 is constant; 
              ); 

   

−16,787.68  
(−1,450.19) 

<1/1000 

Model II: SIR-
type model* 

Reflecting assumption 
in standard SIR-type 
compartmental 
models, assumes 
exponentially 
distributed individual 
reproductive 
numbers. 

 is exponentially distributed; 
                ); 

        ) 

−17,804.98  
(−2,468.19) 

<1/1000 

Model III: 
Overdispersed 
model 

Assumes that the 
number of secondary 
cases from an 
individual are over 
dispersed, and the 
degree of 
overdispersion is 
estimated. 

 is gamma distributed; 
                        ) 
  is the dispersion parameter, 
smaller values relate to larger 
heterogeneity; 

     
  

 
) 

−15,507.78  
(−170.99) 

<1/1000 

Model IV: 
Long-tailed 
model 

Assumes that 
individual-level 
heterogeneity is 
lognormally 
distributed (allowing 
for even larger 
heterogeneity). 

 is lognormally distributed; 
                          ) 
     are, respectively, mean 
variance of the underlying 
normal distribution; 
 

                )    )  
 

−15,336.79  
(Ref) 

  

 

Table 2. Description of four models of individual-level heterogeneity, and comparison of their 

statistical fits to the reference data. 

 

* Poisson and geometric models are specific instances of the negative binomial model: negative binomial model with 

dispersion parameter k  is a Poisson model, and k=1 is a geometric model. 

** Relative likelihood is given by the quantity                )  ), where     is the Akaike information criterion, and 

      is the     score corresponding to the best-fit model, or the model with the lowest score.  
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FIGURE LEGENDS 

 

Figure 1. Genotype cluster distribution of tuberculosis (TB) cases in the United States. Shown are 

the frequency of observed genotype TB clusters of various sizes in the United States based on (A) 

cases reported within a given state and occurring within a 5-year time period (2012 to 2016); and (B) 

cases reported within a given county and occurring within a 3-year time period (2014 to 2016). 

Genotypic clusters are defined as cases with matching spoligotype and 24-locus MIRU-VNTR 

occurring within the specified geographic boundary and during the specified time window. Both axes 

are plotted on a log scale.  

 

 

Figure 2. Fitting branching process models to genotype cluster distributions of tuberculosis (TB) in 

the United States. We fit branching process models to the cluster distribution consisting of 

genotyped TB cases occurring within U.S. state boundaries over a 5-year time period (shown in Fig 

1A). We considered four different model assumptions to describe the underlying individual-level 

heterogeneity. Model I (homogeneous) hypothesized that there was no individual-level 

heterogeneity except by stochastic chance alone (green), Model II (SIR-type) hypothesized that the 

individual reproductive number followed an exponential distribution (purple); Model III 

(overdispersed), a gamma distribution (yellow); and Model IV (long-tailed), a log-normal distribution 

(blue). Shown are (A) frequency distributions and (B) cumulative probability distributions 

corresponding to the best-fit models of each type (shown by colored dashed lines) against the data 

(shown in grey dots). Cluster size and frequency distributions are plotted on a log-scale, and the 

cumulative probability distribution is plotted on a logit scale. 

 

 

Figure 3. Underlying individual-level heterogeneity of tuberculosis (TB) transmission. Shown is the 

probability density function corresponding to the best-fit Poisson lognormal model, describing the 

distribution of the individual reproductive number under the reference scenario (clustering based on 

genotyped cases reported within state boundary and occurring between 2012 and 2016). The solid 

vertical line shows the mean of the distribution (i.e.,   ̂), or the estimated average number of 

secondary transmission cases resulting from a single TB case. 

 

 

Figure 4. Comparing model-based inferences under different definitions of tuberculosis clusters in 

the United States. We fit Poisson lognormal models to four separate cluster distributions, each using 

a different geographic boundary and time window for cluster ascertainment. Shown are the 

estimated mean reproductive number (i.e.,   ̂) and variance of the distribution of secondary cases, 

when the clusters were defined to include cases reported within (i) state boundaries and occurring 
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within 5-year time window (hatched orange); (ii) state boundaries and occurring within a 3-year time 

window (orange); (iii) county boundaries and occurring within a 5-year time window (hatched 

green); and (iv) county boundaries and occurring within a 3-year time window (green). The crosses 

indicate maximum likelihood estimates, and shaded areas indicate estimated 95% confidence 

intervals. 

 

 

Figure 5. State-level heterogeneity in tuberculosis cluster distributions and transmission across 

four U.S. states: California, Florida, New York, and Texas between 2014-2016. (A) Colored circles 

show cluster distributions in California (green), Florida (violet), New York (blue), and Texas (orange) 

as cumulative probabilities (i.e., the probability of a cluster of given size or less). The colored lines 

show cumulative probabilities corresponding to the Poisson lognormal model with maximum 

likelihood estimates. (B-E) Shown are the estimated reproductive numbers   ̂  and variances (in the 

distribution of secondary cases) for California (B), Florida (C), New York (D), and Texas (E). The 

shaded colored region indicates the estimated 95% confidence region, and the cross in the middle 

indicates the maximum likelihood estimate. 
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